
Advanced Topics:
Clones

Use clones to create multiple sprites for
more efficient and advanced projects.

scratch.mit.edu Set of 7 cards



● Clone 101

● More Clone 101

● Balloon Pop Clones: Quick Game 
Creation

● Clone Piano: Using Local 
Variables

● Clone Piano: Using Global 
Variables

● Fractal Tree: Clones Making 
Clones

● Clone IDs: Generating and Using

Cards in This Pack

scratch.mit.edu Set of 7 cards



Clone 101

Cloning lets you create multiple copies of your 
sprite while your project is running. When each 
clone is produced, it has the same costumes, 
sounds, scripts, and variables as the 
original, but it is otherwise independent.

There are three blocks that are specific to 
clones, which can be found in the Control 
category: “create clone,” “delete this clone,” 
and “when I start as a clone” (where you can 
define code that only applies to the clones and 
not the original sprite).

1Clone 101



Clone 101
scratch.mit.edu

What differences do you notice in the code and the results 
between these three similar scripts?

Sequence and project 
goals are important.

In the first case, the 
original sprite moves 
and changes, creating 
clones along the way.

In other cases, the 
clone is created and 
then controls its own 
movement and/or 
effects.



More Clone 101

When a clone is created, the scripts for the 
original sprite also apply to a clone. That 
means that scripts like “when this sprite 
clicked” or “when I receive [broadcast]” apply 
to them, too.

One exception is scripts that have started 
running before the clone was created (like a 
“when green flag clicked” script). Code that 
should be applied to a clone needs to be 
triggered after their creation (via a broadcast, 
click, key press, “when I start as a clone,” etc.).

2More Clone 101



More Clone 101
scratch.mit.edu

What differences do you notice in the code and the results 
between these three similar scripts?

How does timing 
and sequence affect 
when the clones 
start turning?

Why is the original 
sprite turning in one 
example and not the 
others?

What if the 
spin was 
triggered 
by clicking 
the sprite 
instead? 

What is the 
difference between 
using a broadcast to 
start the turning vs 
attaching the forever 
sequence after the 
repeat sequence?



Balloon Pop Clones: 
Quick Game Creation

You can use clones to create a repeating 
animation or game with objects that 
repeatedly appear to interact with.

For instance, you could make an animation 
where balloon clones are created every few 
seconds and then disappear or can be popped 
by the user. 

(Example here: scratch.mit.edu/projects/1154244503.)

3Balloon Pop Clones

https://scratch.mit.edu/projects/1154244503


Balloon Pop Clones
scratch.mit.edu

1. Create a script that makes a clone every few seconds 
forever when the green flag is clicked. You could…

○ have the original sprite move around and change 
color or size before creating a clone

○ have the clones adjust their own settings after they 
have been created

2. What if you want to add a score? Where would you add 
blocks to set and change the score? You may also need 
to hide the original and show the clones.



Clone Piano: Using 
Local Variables

A local variable (“For this sprite only”) is 
individual to a single sprite or a single 
clone. (Versus a global variable that applies to 
all sprites in the project and all their clones.)

The value stored in each clone’s local variable 
is the value that was present at the moment 
the clone was created.

Local variables show the sprite name followed 
by the variable name in the stage monitor.

(Example here: scratch.mit.edu/projects/1181518635.)

4Clone Piano: Local Variable

https://scratch.mit.edu/projects/1181518635


Clone Piano: Using Local Variables
scratch.mit.edu

1. Create a piano key sprite by
using the Rectangle drawing
tool in the Paint Editor.

2. Assemble a script that creates
clones of the piano key sprite
in a row.

3. Create a local variable (“For
this sprite only”) to store the
note for each clone and the
original sprite.

4. Set the initial note, and then
change the note after each
clone is created. Use the
“note” variable in the “play
note” block. Test and debug!

Optional: Adjust your program so it changes the color of the 
piano key or shows a different costume for the piano key as 
the note is played, so you can hear and see when a piano 
key is pressed.



Clone Piano: Using 
Global Variables

A global variable (“For all sprites”) applies 
to all sprites in the project and all their 
clones. (Versus a local variable that is 
individual to a single sprite or a single clone.)

The value stored can be changed, and the 
variable is updated for all sprites in a project.

Global variables just show the variable name in 
the stage monitor.

(Example here: scratch.mit.edu/projects/1181518635.)

5Clone Piano: Global Variable

https://scratch.mit.edu/projects/1181518635


Clone Piano: Using Global Variables
scratch.mit.edu

1. Create a global variable (“For
all sprites”) to store the
instrument for each clone and
the original sprite.

2. Set the initial instrument, and
then use the “instrument”
variable in the “set
instrument” block.

3. Right click on the
“instrument” stage monitor to
change it to a slider. Then,
right click again to set the
range from 1-21 (the number
of instruments available).
Now, use the slider to change
the instrument globally, for all
piano keys. Test and debug!



Fractal Tree: Clones 
Making Clones

When a clone is created, the scripts for the 
original sprite also apply to a clone. That means 
that clones can be coded to create clones.

There is a limit to the number of clones a 
program can create. At this time, each program 
can create a maximum of 300 clones. The limit 
is important, because issues could arise with 
too many clones (for instance, it could cause 
the program to lag).

(Example here: scratch.mit.edu/projects/1145558837.)

 
6Fractal Tree

https://scratch.mit.edu/projects/1145558837


Fractal Tree
scratch.mit.edu

The fractal tree uses the pen tool and an army of clones to 
draw each branch.

1. Set the initial length, position, and direction of the first 
branch (which will actually be the trunk of the tree). Then, 
place the pen down. (Pen blocks can be found in the 
Extensions.)

2. Next, repeatedly have the program draw a branch by 
moving, split the branch into two, and divide the length, 
so branches get shorter and more numerous.

3. To split the branch, have the sprite 
(original and all clones) turn, create 
a clone of itself, and then turn in 
the opposite direction.

4. Customize by changing the pen 
color, brightness, size, etc.



Clone IDs: Generating 
and Using

Do you want to have more control over an 
individual clone’s behavior? Assign each 
clone an ID as it is created, then use that ID 
in a conditional statement to set unique 
code sequences for each clone.

Generate clone IDs using a local variable (“For 
this sprite only”). The value stored in each 
clone’s local variable is the value that was 
present at the moment the clone was created.

(Example here: scratch.mit.edu/projects/1184917851.)

7Clone IDs

https://scratch.mit.edu/projects/1184917851


Clone IDs
scratch.mit.edu

1. Create a local variable (“For 
this sprite only”) to store the 
clone ID.

2. Set the clone ID to 1, then 
change the clone ID by 1 
after each clone is created.

Optional: Have each clone say 
its clone ID, so you can easily 
identify them on the stage, You 
can always remove this code 
later, when finalizing the project.

3. Create a conditional 
statement and use the 
“equals” Operator block to 
identify individual clones by 
their clone ID.

For example, use a series of 
“if then” blocks or nested “if 
then else” blocks with 
different scripts under each 
one.


