

Debugging Strategies
Debugging is finding and fixing issues or errors in your code that result in it not working
as expected or at all. Issues are often called bugs.

Strategy #1 - Read Aloud/Explain the Code Step-By-Step, to Yourself or to
Someone Else

Have you ever read something you wrote down outloud and discovered grammatical or
punctuation errors? Reading through your code sequence aloud step-by-step can
produce similar results. As you are reading your code aloud, think from the computer’s
perspective. Are you including steps that aren’t actually present? Are your instructions
clear? If something needs to be reset each time the program has run, have you
included those instructions in your sequence?

Strategy #2 - Break Long Sequences Apart into Smaller Pieces

As you are building your code sequences or programs, a good practice is to develop
the program incrementally: code a bit, test, then code a bit more. Then, if a bug
appears, you can more easily identify where it was introduced (likely, in the last piece
you added). If your sequence is already written, however, you can still use this idea to
debug by breaking long sequences apart.

Separate the blocks and click on each individually to see what it does, or break a long
sequence apart into smaller sequences of two to four blocks, in order to narrow down
where the bug appears. This process is called decomposition, which is when you break
down a complex problem or system into smaller parts. Smaller parts are often more
manageable to edit and tinker with, and easier to understand.

Click on a single block or sequence of blocks in the script area to run just that piece of
the program. When you know a piece is working as expected, add it back into the main
program and move to the next piece to test.

 Created by the Scratch Foundation (scratchfoundation.org). Shared under the ​
Creative Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/

Strategy #3 - Add Temporary Waits to Slow Down the Action

The computer can run your program so quickly that you may not be able to see all the
action with your eyes. Add in temporary “wait” or “wait until (key pressed)” blocks to
slow down the sequence and give you time to process if a piece worked or not. Once
you know the code is working, you can remove these waits.

Strategy #4 - Add Temporary Sounds at Key Checkpoints

Similar to the strategy of adding temporary waits/pauses in your code, identify key
points in your sequence and add a different funny sound to play before it runs using
the “play until done” block. If a sound doesn’t play, you know the bug most likely
occurs before the sound. Or if a sound plays and then the bug occurs, you know the
bug most likely occurs after the sound. Once you know the code is working, you can
remove these sounds.

Strategy #5 - Tinker with the Block Order

Try adjusting the order/the sequence of the blocks. Ask yourself: What needs to
happen first? What needs to happen second? Do values or sprites need to reset before
the next piece of the code runs?

Try using blocks inside a loop or conditional statement, versus outside of a loop or
conditional statement. It can make a big difference!

 Created by the Scratch Foundation (scratchfoundation.org). Shared under the ​
Creative Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/

Strategy #6 - To Loop or Not to Loop

Does your program use Control blocks like "forever" and "repeat" to loop through steps
over and over again?

●​ Check that all the blocks inside a loop should be there, or is there a block
missing to reset the action or adjust the timing, like a "wait" block?

●​ Do you want your loop to run forever or just for a finite number of times?

●​ Or should something stop the looping?

Another possibility is perhaps you aren't using a loop when you should be. For
instance, if you are using a conditional statement block like "if then”:

●​ Does the program only need to check if it is true or false once?

●​ Or does it need to check continuously, in which case, you would want to place
your conditional statement inside a forever loop?

Strategy #7 - Considering Timing and Parallelism

Do you have multiple events trying to run at the same time? It may be unnoticeable to
your eye, but it takes a small amount of time to run each code block. If two sequences
are programmed to start at the same time (for instance, you are using several green
flag blocks), you can get unpredictable behavior if you don’t establish some timing and
order through waits, broadcasts, or user interaction (like clicking or key presses).

Say one code sequence resets a variable, like the score, when the green flag is clicked.
But a second sequence that also runs as soon as the green flag is clicked and is set to
check that score and do something based on the value. Adding a small wait to the
second sequence checking the score would allow the program to reset the score
before the second sequence starts checking the score, which will result in greater
accuracy/less chance of unexpected failure.

 Created by the Scratch Foundation (scratchfoundation.org). Shared under the ​
Creative Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/

Strategy #8 - Is There a Similar but Different Block Option?

Some blocks look similar but can behave differently, or be more appropriate to use in
different contexts. “Set” versus “change” or “play until done” versus “start”... Try using
a similar block in place of what you have and see if there is a difference to the
outcome.

Strategy #9 - Check the Values

Are you using variables (either custom variables or provided reporter blocks, like
“answer,” “x position,” “direction”...) in a code sequence? Do you know what the value
is at the moment the code sequence is being run?

If you need to know the value to determine whether or not a sequence is functioning as
expected, there are a few ways to find the value:

●​ If there is a checkbox next to the variable or reporter block in the block palette,
ensure it is checked off to show it on the stage. You can uncheck to hide it again
after debugging.

●​ Place the variable or reporter block inside a “say” block to have your sprite
report the value. If you put the “say” block inside a “forever” loop, it should
continually report the updated value as it changes.

●​ Click on the variable or reporter block in the block pallet or script area to get a
one-time report of the value.

Also ask yourself: Do/should all the sprites control a variable, or should only one sprite
have control? Where is the value reset? Where is it changed?

 Created by the Scratch Foundation (scratchfoundation.org). Shared under the ​
Creative Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/

Strategy #10 - Is Your Code Sequence in the Right Place?

Is your sequence associated with the correct sprite, or the sprite versus the backdrop?
Check which sprite is highlighted in the sprite area when looking at your code, or which
image is shown in the upper-right corner of the script area. Or is the backdrop
highlighted?

If you need to move your code to another sprite or backdrop because you accidentally
wrote it in the wrong place, you can drag-and-drop a code sequence onto another by
hovering over the correct one in the sprite or backdrop area and releasing when you
see it wiggle. Or drag the code sequence to your backpack*, click on the correct sprite
or backdrop, and then drag it up to that script area. Just don’t forget to delete the code
where it was written incorrectly once you’ve ensure it has been moved. *Note: you
logged in to access the backpack.

Strategy #11 - Comment Your Code

Adding comments to your code not only helps others looking at your code understand
how it is working, but explaining your code to an audience can strengthen your
understanding of what you’ve created. Writing comments can help you spot any errors,
or help you identify any unnecessary extra code that can be removed. It can also help
you remember how your code works when you come back to it later. Use everyday
language to explain what a block, or small sequence of blocks, does.

Strategy #12 - Take A Break, Step Away

Sometimes, spending too much time focused on an issue can be counterproductive.
Frustration can make it hard to think clearly. Taking a break and physically stepping
away from the screen could help you clear your mind. After some rest, focusing on
something else, or getting some water, you can approach the debugging with fresh
eyes. Start from the beginning, try one of the other strategies listed here, and try
thinking about the problem from a different perspective.

 Created by the Scratch Foundation (scratchfoundation.org). Shared under the ​
Creative Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/

Strategy #13 - Ask for Help

If you’ve tried the other strategies listed here and are still stuck, you can ask for help
from a peer or an activity facilitator. If you enjoy participating in the Scratch online
community, you could also share your project, ask for help debugging in a comment or
project notes, and then other Scratchers can see inside your project to examine your
code and help you debug.

Ask one to three people to try your code, as different people may have different
perspectives or solutions. There is often more than one way to solve a problem, so you
can determine which is the most efficient way for your program, which gets the closest
to accomplishing your goal, and which solution you understand best and can
reproduce.

Suggestion - Version Control

Before breaking apart your code, consider keeping a copy in a safe place in case you
need to refer back to it. This is known as version control. You could practice version
control in a few ways, such as:

●​ Save a copy of the Scratch program file to your computer (File > Save to your
computer). It can be uploaded to Scratch later if you’d like to reference it. You
can rename it with a date or a version number or helpful wording so you know
what version of your program it is.

●​ Duplicate the code sequence and remove any hat block/event block at the top
that would make it run. Place that copy elsewhere on the script area as a
backup you can reference.

See our poster versions:

Debugging Strategies (8.5x11 individual posters)

Debugging Strategies (18x24 one-page version)

A shortened version of these strategies are also shared in the ​
Project Editor Debug widget

Tip: If you’d like to translate this guide, click here to make a copy of this Google doc.

 Created by the Scratch Foundation (scratchfoundation.org). Shared under the ​
Creative Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://resources.scratch.mit.edu/www/posters-printables/en/ScratchLearningResource_DebuggingStrategiesPosters.pdf
https://resources.scratch.mit.edu/www/posters-printables/en/ScratchDebuggingStrategies-1pgPoster.pdf
https://docs.google.com/document/d/1Hn9rhPmem9Z2WjolO8CfnYqUxgZE3Ooa4VrPuGpqc5Y/copy
https://www.scratchfoundation.org/

	Debugging Strategies
	Strategy #1 - Read Aloud/Explain the Code Step-By-Step, to Yourself or to Someone Else
	
	Strategy #2 - Break Long Sequences Apart into Smaller Pieces
	
	Strategy #3 - Add Temporary Waits to Slow Down the Action
	
	Strategy #4 - Add Temporary Sounds at Key Checkpoints
	
	Strategy #5 - Tinker with the Block Order
	
	Strategy #6 - To Loop or Not to Loop
	
	Strategy #7 - Considering Timing and Parallelism
	
	
	Strategy #8 - Is There a Similar but Different Block Option?
	
	Strategy #9 - Check the Values
	
	
	Strategy #10 - Is Your Code Sequence in the Right Place?
	
	Strategy #11 - Comment Your Code
	
	Strategy #12 - Take A Break, Step Away
	
	Strategy #13 - Ask for Help
	
	Suggestion - Version Control

