
Making Interactive Projects with
Conditional Statements
Have you ever wanted to create a Scratch program that is interactive or offers multiple
outcomes? Some Scratch programs are static: the outcome is fixed and the same thing
happens each time. Some are dynamic: they are capable of action or change each time they
are run. In order to create dynamic programs, the programmer can use conditional statement
blocks to give instructions on how the project should respond in different circumstances.

In this guide, you’ll find:

● What Are Conditional Statements

● Until True or False

● If True or False

● Conditional Loops

● Condition Examples

● Debugging Conditional Statements

● Multiple Pathways/Solutions

● Unplugged Practice with Conditional
Statements

What Are Conditional Statements
Imagine a project where a fish can be controlled by the user’s mouse (see example here). The
fish’s script says: forever, go to the mouse-pointer. What if you wanted a unique action to take
place if the fish touches another sprite, like a pufferfish?

We can create a script that uses a “wait until” conditional statement block and tells the
program to wait until the sprites are touching. Then, once touching, we can program an action
like changing costumes and saying, “Ouch!” Now, the program is dynamic and interactive!

● If the user never moves the fish over the pufferfish, nothing happens.

● If they do move the fish on top of the pufferfish, they get to see a fun animation!

A conditional statement can be true or false. In this case, if the
sprites are touching it is true. If they are not touching, it is false.

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://scratch.mit.edu/projects/977165995
https://www.scratchfoundation.org/


Under the Control category in Scratch, you will find a number of conditional statement blocks
that allow you to adjust your program based on specific conditions. In Scratch, you’ll encounter
two types of conditional statements:

“until (something) is true or false” “if (something) is true or false then”

Let’s explore these conditional statement blocks, practice with some examples, and learn how
to create dynamic and interactive programs!

Until True or False

In the fish game above, we used an “until (something) is true or false” block to trigger an
action. The two scripts below use “wait until” and “repeat until” to perform actions. Let’s take a
closer look to see the difference:

“Wait Until”

Start with a simple script like: when the green
flag is clicked, wait until a certain condition
is true and play a sound. In this case, we
could look under the sensing category and
pick a condition like “touching mouse-pointer.”

To test this script and see how it works, click
the green flag, wait, and then hover your
mouse over your sprite. Your sound will play
only when the mouse touches the sprite.

“Repeat Until”

Adjust your script to say: when the green
flag is clicked, repeat playing a sound until
a certain condition is true. (A short sound
is best for this test.) Let’s use the same
condition “touching mouse-pointer.”

To test this script and see the difference,
click the green flag, wait, and then hover
your mouse over your sprite. The sound
plays repeatedly and only stops once your
mouse touches the sprite.

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/


If True or False

Another version of conditional statements in Scratch is checking to see “if (something) is true
or false.” For example, say you want to create a maze game (see example here) where the
player controls the sprite with keyboard arrow keys:

Initial Code

When a key is pressed the
sprite is coded to move a
certain number of steps. But
you need to prevent the
sprite from walking through
the walls. What can make
that possible? Conditional
statements!

Add an “If Then” Statement

We can use the color of the
maze walls as our condition
to affect the behavior of the
sprite. Add an “if then”
block to the bottom of the
sequence. Use the “touching
color” sensing block as the
condition and select the
color of the walls. What
should happen if it touches
the walls? If the sprite moves
the same number of pixels in
the opposite direction, it will
look like the sprite hasn’t
moved at all and has been
stopped by the wall.

Test out this maze code and then add additional scripts to move the sprite left, up, and down.

How could you use an “if then” or “if then else” block to program a win message, a sound, or
an animated celebration when the sprite reaches the end of the maze? How could you use
conditional statements to program obstacles to avoid or items to collect for points?

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://scratch.mit.edu/projects/952233194/
https://www.scratchfoundation.org/


Conditional Loops
What if you want the program to continually check to see if the condition is true or false
(continually “listen”) and perform actions over and over? You’ll need to place the sequence
inside a loop to create a conditional loop. Compare the difference between these two scripts:

In this example, once the condition is met
and the code is run, the program stops (you
can tell the script has stopped running
because it is no longer highlighted). It only
“listens” once for the condition.

In this example, the program continuously
“listens” to see if the condition is true. The
script inside the forever loop restarts after the
condition has been met and the code is run.
It checks if the condition is true/false again.

Condition Examples

“Not” Operator

What if we want something to happen if
something else is not happening (like if the
mouse-pointer is not touching the sprite)?
Under the Operators category, look for a
“not” operator. Test the code stack above by
hovering the mouse-pointer on and off of the
sprite. What difference do you notice?

Comparison Operators

Comparison operators compare the values of
two pieces of data and determine if the
equation is true or false. This conditional
statement above says that the sprite should
move 10 steps at a time until the x position is
greater than 150. Test this code stack and
see the result.

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/


There are a wide variety of conditions in Scratch that you can choose from to complete your
conditional statement. Blocks that report "true" or "false" values are known as Boolean
blocks, and you can identify them by their elongated hexagonal shape. Some examples of
conditions you could use include:

● user actions, such as pressing certain keyboard keys or positioning
or clicking the mouse

● sprite interactions (touching another sprite), comparisons (distance
between sprites), and touching colors of sprites or backdrops

● data input by users, data stored in variables and lists, or data
stored in reporter blocks

Debugging Conditional Statements

As you are creating a program, you may want to do some user-testing by having a few friends
or family members try it out. Is everything working as expected, or do you need to do some
debugging to address errors or unexpected behaviors?

Debugging: Why Isn’t It Checking?

If you only need the program to check your
condition once, you don’t need to place
your conditional statement inside of a loop.
But if you want the program to continually
check to see if the condition is true or false
(continually “listen”) and perform actions
over and over, you’ll need to place the code
sequence inside of a loop to create a
conditional loop.

For instance, in the first example to the
right, when I begin the fish program and
click the green flag, the fish and pufferfish
aren’t touching, so the program stops the
script because the condition has been
checked and was false.

In the second example, the program
continually checks to see if the condition is
true or false and will run the code under “if
then” when true or under “else” when false.

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://www.scratchfoundation.org/


Debugging: Sequential Order

Say I want to add some code to the
pufferfish sprite in the fish game, so the
player sees different costumes in different
circumstances.

In the first example on the right, I have
nested two “if then else” statements:

● First, the program checks to see if
the sprites are touching, and if that
is true, then it shows costume d.

● Else, if touching is false, it checks if
the distance between the sprites is
close, and if it is, then shows
costume c.

● Else, it shows the initial costume a.

What if the order of the nested “if then else”
statements was different? In the second
example:

● First, the program checks to see if
the distance between the sprites is
close, and if it is, then shows
costume c.

● Else, if the distance is greater than
150 pixels, it checks if the sprites
are touching, and if that is true, then
it shows costume d.

● Else, it shows the initial costume a.

In the second example, we never see the
winking pufferfish (costume d) when the
sprites touch. Why?

In the sequential order of the second
example, the program is checking first to
see if the distance between the sprites is
less than 150. Since that is also true when
the sprites are touching, the program
doesn’t move on to check touching.

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://scratch.mit.edu/projects/977165995
https://www.scratchfoundation.org/


Debugging: Mathematical Expressions

As I’m working on my pufferfish code, how
do I determine the distance I want to input
in my comparison operator that is
checking distance? It can be hard to judge
pixel distance by sight.

This “distance to Fish” reporter will report
the distance between the two sprites’
center points. Click on the reporter block
on the script area to see the value.

Now, put “distance to” into an operator
block like greater than or less than, move
the sprites together and apart and click on
the condition on the script area to see if
it reads true or false.

If you want to tinker and quickly see what
the distance reading is when the fish is in
different positions, you could also have the
pufferfish continually say the “distance to
Fish” as you move the fish around.

Multiple Pathways/Solutions
There is often more than one solution/more than one way to code a program to get a similar
result. For instance, if we return to the code for the fish in the fish game, say I want to adjust
the code to add a conditional loop so the fish and the pufferfish can interact more than once.

Notice all three solutions above use similar blocks, but one uses “wait until,” one uses “if then,”
and the third uses an “if then else” conditional statement. Look at, recreate, and tinker with
these three scripts. What is the same and what is different?

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://scratch.mit.edu/projects/977165995
https://www.scratchfoundation.org/


Unplugged Practice with Conditional Statements

Explore if/then and while/until conditional blocks using our Simon Says Conditional Statements
unplugged game activity. One person functions as the programmer while the participants, as
computers, need to determine if statements are true or false and then act accordingly.

See our companion coding cards: Conditional Statements Coding Cards

See our companion resource videos here for more:

Conditional Statements: Make Interactive Projects (Part 1)| Tutorial
Conditional Statements: Nesting, Debugging, and Beyond (Part 2)| Tutorial

Tip: If you’d like to translate this guide, click here to make a copy of this Google doc.

Created by the Scratch Foundation (scratchfoundation.org). Shared under the Creative
Commons Attribution-ShareAlike 4.0 International Public License (CCbySA 4.0).

https://youtu.be/STMtgEsi2Ik
https://youtu.be/1LK7sJVW9EA
https://resources.scratch.mit.edu/www/unplugged/en/UnpluggedActivity_ConditionalSimonSays.pdf
https://resources.scratch.mit.edu/www/cards/en/conditionalstatement-cards.pdf
https://docs.google.com/document/d/1rfIArfQihlNlGZkR-vXNLfKyCYPTvHNGHlU6YCGukcE/copy
https://www.scratchfoundation.org/

