


Session Overview
● Computational Concepts
● Creative Learning
● You Don’t Need to Have All the Answers
● Modelling
● Start with Exploration
● Similar But Different
● Coding Reading Challenge
● Comment Your Code
● Many Pathways & Version Control
● Coding Challenge
● Debugging Help
● Debugging Challenge 1 & Why
● Debugging Challenge 2 &Why
● Debugging Challenge 3 & Why
● Prompts to Try & Talk to a Duck!
● Debugging Reflection

Facilitator: Maren Vernon
Scratch Learning Resource Designer 
@algorithmar and @scratchlycaterton

https://scratch.mit.edu/users/algorithmar/
https://scratch.mit.edu/users/scratchlycaterton/


Learning Goals

● Practice debugging and explore strategies to get 
unstuck with fun challenges

● Embrace playful learning and tinkering mindset 
values (with the support of facilitation 
centering student-led inquiry, hands-on 
building, testing, iterating, and collaboration)

● Reflect on the debugging process



Click “Create” or log in to your 
free account to save projects.

Set your language and block 
color mode.

Choose a sprite. Drag and drop 
code blocks to create a script.

scratchfoundation.org/learn/learning-
library/getting-started

Getting Started

https://scratchfoundation.org/learn/learning-library/getting-started
https://scratchfoundation.org/learn/learning-library/getting-started


Let’s Tinker…
Activate Growth Mindset



Computational Concepts
As Scratchers begin exploring computational concepts that are common in many 
programming languages…

● sequence: identifying a series of steps for a task

● loops: running the same sequence multiple times

● parallelism: making things happen at the same time

● events: one thing causing another thing to happen

● conditionals: making decisions based on conditions

● operators: support for mathematical and logical expressions

● data: storing, retrieving, and updating values

…they may run into common errors that will challenge their problem-solving skills and 
reinforce the importance of iteration and a growth mindset. 



Creative Learning
As facilitators, we want to support playful learning and 
tinkering mindset values so that participants can: 

● Engage playfully in projects that are meaningful 
to them and elicit joy

● Collaborate with peers to experiment, share, and 
celebrate ideas

● Develop a mindset that is comfortable with the 
discomfort of getting stuck

● Develop a mindset that thinks critically about 
strategies for getting unstuck

scratchfoundation.org/learn/learning-library/scratch-creative-
learning-philosophy

https://scratchfoundation.org/learn/learning-library/scratch-creative-learning-philosophy
https://scratchfoundation.org/learn/learning-library/scratch-creative-learning-philosophy


You Don’t Need to Have All the Answers
As a facilitator…

● You don’t need to be a coding expert.

● You don’t need to have all the answers.

● Collaborative experimentation is the key!

Even the most experienced programmers need to debug 
often and practice their growth mindset.

● Answers can take time.

Take a break and step away from the screen to clear your 
mind. After some rest, focusing on something else, or getting 
some water, you can approach the problem with fresh eyes.



Modelling
It can be powerful to model getting stuck, 
debugging, and iterating alongside your 
learners.

We are learners just as much as our 
learners, so give yourself grace and 
remember, you don’t have to have all the 
answers.

Encourage peer-to-peer conversations: 
“Ask Three Before Me,” ask three peers 
before asking a facilitator. Bonus: 
Teaching others can be a powerful way of 
solidifying information for yourself, so 
give your learners a chance to try sharing 
knowledge.

Mistakes and failures 
are welcome

Get excited when something goes 
wrong! Rather than avoiding mistakes, 
encourage learners to be open to them. 

As you support them through their 
work, help them focus on the process.



Start with Exploration
For those new to Scratch, it can be helpful 
to let users get stuck and experiment a bit 
with blocks before sharing tips and 
tricks.

In the blog post “Start with Exploration, Not 
Explanation,” Natalie Rusk shared:

Young people who have developed broad 
creative, computational, and collaboration 
skills with Scratch usually first learned by 
“playing” or “messing around” with it, trying 
things out and seeing what worked. This playful 
approach helped them build their confidence in 
their ability to learn and problem solve.

Hold the tools as a last resort

It’s tempting to grab the mouse, but try 
describing the steps rather than doing 
it for learners.

If you have to navigate the tools, let 
them try for themselves after you show 
them and guide them along.

https://medium.com/scratchteam-blog/scratch-in-practice-start-with-exploration-not-explanation-be76c18bd221
https://medium.com/scratchteam-blog/scratch-in-practice-start-with-exploration-not-explanation-be76c18bd221


Check out our Achievery Unit “Similar But 
Different.”

Some blocks look similar but can behave 
differently. This is an opportunity to pause 
and experiment. Try using a similar block in 
place of what you have, and see if this affects 
the result.

Consider pair programming to surface 
different solutions. 

Examine. Write down a hypothesis. Create a 
code sequence and observe. When might you 
want to use one method over another?

Achievery Unit

Similar But Different ● Sound: “start sound” vs “play until done”

● Looks or Variables: “set” vs “change”

● “Say,” “say” with time, “think,” and “speak”

● “Move” vs “change x” (or y)  vs “move” plus 

“point in direction”

● “Point in direction” vs “turn”

● “If then” vs “if then else”

● “repeat until” vs “wait until”

https://www.theachievery.com/en/content/unit/similar-but-different
https://www.theachievery.com/en/content/unit/similar-but-different


Check out our Achievery Unit “Code Reading 
Challenge.” Try to create your own!

As you are watching similar but different 
sequences being performed, determine which 
code sequence matches each video clip.

What clues did you use to match a code 
sequence to a specific video clip?

Was the end result dramatically different or 
similar?

When might you want to use one solution over 
another?

Achievery Unit

Coding Reading Challenge

https://www.theachievery.com/en/content/unit/code-reading-challenge
https://www.theachievery.com/en/content/unit/code-reading-challenge


Comment Your Code
In the script area, adding comments to your 
code can help others looking at your code 
to understand it, and also remix it and 
make changes.

It can also help you remember how your 
code works when you come back to it later. 
(See our starter projects for examples).

Right click on script area to “Add 
Comment.” Use everyday language to 
explain what a block, or small 
sequence of blocks, does.

https://scratch.mit.edu/starter-projects


Many Pathways
In the blog post “There’s More Than One 
Way to Code a Cat,” Natalie Rusk shared:

Before responding, I find it’s helpful to ask 
what they have in mind, so they can think 
aloud about the process. Talking out their idea 
is often enough to help them to figure out what 
to do next. It’s interesting how often students 
will come up with a way to code that is 
different than one I might have suggested, but 
ends up working the way they want…

Focusing on a single pathway not only limits 
the creative potential of coding, it also limits 
who becomes interested in coding and decides 
to learn more.

Encourage experimentation

Gently encourage participants to move 
out of their comfort zones to try new 
activities and concepts.

Remixing other people’s projects is a 
great way to explore new ideas!

Create a studio or host a 
Gallery Walk to view and 
learn from others’ solutions.

Record reflections in the 
Scratch Design Journal 
and/or comment code.

https://medium.com/scratchteam-blog/scratch-in-practice-theres-more-than-one-way-to-code-a-cat-978170c9aa7a
https://medium.com/scratchteam-blog/scratch-in-practice-theres-more-than-one-way-to-code-a-cat-978170c9aa7a
https://scratchfoundation.org/learn/learning-library/scratch-design-journal


Version Control
Before altering your code, consider keeping a 
current copy in a safe place, in case you need 
to refer back to it. This is known as version 
control. 

● Save a copy of the Scratch program file 
to your computer (File > Save to your 
computer). Load from your computer to 
a new project if you’d like to reference it. 
Name with a date, version number, or 
helpful wording.

● Or duplicate the code sequence in the 
script area. Remove any hat block/event 
block at the top that would make it run. 
You’ll have in your program as a backup 
you can reference.



Consider creating a small coding 
challenge that can have multiple 
solutions, It can be a fun opportunity to 
see the different ways learners approach a 
similar problem and generate classroom 
or peer-to-peer discussion/reflection.

Check out our Achievery Unit “Coding 
Challenge, Part 1,” “Part 2,” and “Part 3” as 
an example. We investigate ways to trigger 
events at specific times, adding an 
appearing sprite and visual effects, and 
making the project interactive by giving 
the user more control over the action.

Achievery Unit

Coding Challenge

https://www.theachievery.com/en/content/unit/coding-challenge-part-1
https://www.theachievery.com/en/content/unit/coding-challenge-part-1
https://www.theachievery.com/en/content/unit/coding-challenge-part-2
https://www.theachievery.com/en/content/unit/coding-challenge-part-3


Debugging is finding and fixing 
issues or errors in your code that 
result in it not working as expected 
or at all. Issues are often called bugs.

Our debugging module in the Project 
Editor shares strategies that are 
expanded on in our printable posters. 
They can be found in our Learning 
Library under Debugging.

The following challenges 
demonstrate opportunities to use 
these tips. Hopefully, they’ll inspire 
you to create some challenges of 
your own!

Debugging Help

https://www.scratchfoundation.org/learn/learning-library/debugging


Check out our Achievery Unit “Debugging 
Challenge: The Batter.”

Can you debug this sequence and come up 
with a solution so the batter approaches the 
plate each time, swings in the correct order, 
and the costume changes can be seen 
better?

Recreate the batter’s code yourself in a 
Scratch project, or see the code in action 
here: projects/877707825 (Possible solutions 
are shared in the unit and inside the project, 
but there can be many pathways.)

Achievery Unit

Debugging Challenge 1

https://www.theachievery.com/en/content/unit/debugging-challenge-the-batter
https://www.theachievery.com/en/content/unit/debugging-challenge-the-batter
https://scratch.mit.edu/projects/877707825


Achievery Unit

Debugging Challenge 1 - Possible Solution



One common issue Scratchers face is the 
need to reset the scene when a program 
runs again.

Scratch scripts don’t automatically reset 
the position of the sprites, their visibility, 
their costume, etc., each time the green flag 
is clicked.

The action of the program can also move 
quickly, so slowing down the action could 
make it easier to debug.

Why This Challenge? Slow It Down and/or Add Sound Checkpoints

The computer runs your program so quickly it can be 

hard to follow with your eyes. Add temporary “wait” or 

“wait until” blocks to slow down the sequence. This 

gives you time to process if a piece worked or not.

And/or you can add different sounds with the “play 

until done” block at key points to test your sequence. 

If a sound doesn’t play, your bug may be before this 

block. If the sound plays, the bug is probably after 

this block. Remove the sounds once your code works.



Check out our Achievery Unit “Debugging 
Challenge: Cat and Bug.”

Can you debug this sequence and come up 
with a solution so the cat spins and then 
moves to the ladybug, and then the ladybug 
plays “Hey”?

Recreate the code yourself in a Scratch 
project, or see the code in action here: 
projects/877745661 (Possible solutions are 
shared in the unit and inside the project, but 
there can be many pathways.)

Achievery Unit

Debugging Challenge 2

https://www.theachievery.com/en/content/unit/debugging-challenge-cat-and-bug
https://www.theachievery.com/en/content/unit/debugging-challenge-cat-and-bug
https://scratch.mit.edu/projects/877745661


Achievery Unit

Debugging Challenge 2 - Possible Solution



Sequence and block placement are 
important, especially when using loops.

Timing events between different sprites 
can be a challenge, and there are multiple 
ways to approach it. For example, to time 
the ladybug to play “Hey,” you could:

● add a short “wait” block before the 
sound plays

● use a conditional statement like “wait 
until touching Cat”

● use a “broadcast”

Reflect on different approaches. Not one 
right answer! It depends on goal.

Why This Challenge? To Loop or Not to Loop

Can a loop speed up your coding process? Check that 

all blocks inside a loop should be there. Do you want 

your loop to run forever or a certain number of times? 

Should something stop the looping?

Tinker with Block Order

Try adjusting the order/sequence of the blocks. What 

needs to happen first? What happens second? Do 

values or sprites need to reset before the next piece 

of code runs?



Check out our Achievery Unit “Debugging 
Challenge: Color Coral.”

Can you debug this sequence and come 
up with a solution so the player only loses 
one point each time the fish reaches the 
coral, and the player doesn’t lose points if 
the fish touches the starfish?

Recreate the code yourself in a Scratch 
project, or see the code in action here: 
projects/877715309 (Possible solutions 
are shared; many pathways.)

Achievery Unit

Debugging Challenge 3

https://www.theachievery.com/en/content/unit/debugging-challenge-color-coral
https://www.theachievery.com/en/content/unit/debugging-challenge-color-coral
https://scratch.mit.edu/projects/877715309


Achievery Unit

Debugging Challenge 3 - Possible Solution



No one solution; supports multiple pathways.

This challenge introduces Boolean blocks, 
which report values as “true” or “false.” 

It is important to understand what the values 
are, in a given moment in the script, when 
using variables, reporter blocks, or Booleans.

Tip: While debugging, have the sprite report 
values using a “say” block:

Why This Challenge?
Check the Values

If you are using variables, reporter blocks, or 

Booleans, check the value at the moment the code 

sequence is run.

Do/should all the sprites control a variable, or should 

only one sprite have control?

Where is the value reset? Where is it changed?



Prompts to Try
“I love it! What is it?” 

“Can you explain what your program does?”

“Walk me through your code. What does it say?”

“What do you want your program to do?”

“Can you tell me more about that?”

“What new things did you try out?”

“Which category do you think would be helpful?” 

“I don’t know, but let’s find out together/look 
around the room.”

“What are your next steps for this project?”

Ask questions vs giving answers

It may be tempting to give answers to 
questions right away. Or you may not 
have the answers.

Ask questions instead so that learners 
can arrive at their own answers.



Talk to a Duck!
Read your code aloud and think from the 
computer’s perspective:

● Are you including steps that aren’t 
there?

● Are your instructions clear?

● If something needs to be reset each 
time the program has run, are those 
instructions included?

Explain what you wanted to accomplish to 
an inanimate object, like a rubber duck. 
Often, talking through the code aloud or 
explaining it to someone else (even an 
imaginary someone) can be revealing.

Rubber Duck Debugging

A technique in software engineering, 
wherein a programmer explains each 
step of their code in natural language 
which can reveal mistakes and 
misunderstandings.



Debugging Reflection
What challenges came up for you while creating this project? How did 
you get unstuck, or what strategies did you use to debug the code?

When you have moments of frustration while debugging, what 
techniques do you use to manage your emotions or your level of stress?

If you cannot debug a problem on your own, where can you turn to for 
help or advice? What are trusted sources of information?

When preparing to debug, what are your strategies to keep track of the 
changes you are making and what works/what doesn’t work?

How did you attempt to fix the code? What do you think is going on 
after your changes?

Many pathways, many solutions: Compare your code with other 
solutions. Was your solution similar or different? Why did you choose 
the blocks you did? How might you iterate/what would you add or 
change if you had two more days?



Wrapping Up
Reflecting on Our Session, Resources, Next Steps



Get a copy of our Creative Learning Materials!
In addition to the resources shared throughout these slides:

● See our Learning Library at scratchfoundation.org/learn/learning-library to find lesson 
plans, coding cards, tutorial videos, and more! See Debugging for tips and posters.

● Scratch Creative Learning Philosophy 

● For this session, we shared facilitation tips that have been collected from partners at 
the Lifelong Kindergarten Group at MIT, Family Creative Learning, and Harvard’s 
Creative Coding Lab (Getting Unstuck), in addition to our own facilitation experience.

Find help, inspiration, and information:

● Visit scratch.mit.edu/ideas and scratch.mit.edu/starter-projects 

● Click “Tutorials” to see in-editor guides

● Watch tutorial videos on our channel youtube.com/c/ScratchTeam

https://scratchfoundation.org/learn/learning-library
https://www.scratchfoundation.org/learn/learning-library/debugging
https://scratchfoundation.org/learn/learning-library/scratch-creative-learning-philosophy
https://www.media.mit.edu/groups/lifelong-kindergarten/overview/
https://www.familycreativelearning.org/
https://creativecomputing.gse.harvard.edu/
https://creativecomputing.gse.harvard.edu/
https://creativecomputing.gse.harvard.edu/getting-unstuck/
http://scratch.mit.edu/ideas
http://scratch.mit.edu/starter-projects
https://scratch.mit.edu/projects/editor/?tutorial=home
http://youtube.com/c/ScratchTeam


Find Scratch on The Achievery!
The Achievery platform connects K-12 
students to a new world of digital 
learning.

Scratch Foundation has teamed up with 
The Achievery to provide free beginner 
and intermediate creative coding lesson 
plans on a variety of topics for 
educators, caregivers, and learners.

Sign up (for free!) by using our 
custom code “SCRATCH” when you 
register to support our work!

theachievery.com/account/signup

https://www.theachievery.com/account/signup?utm_source=Scratch&utm_medium=referral&utm_campaign=default


Thank you!
Be sure to subscribe to our Scratch 
Foundation YouTube channel for Educators 
(@scratchfoundation).

Keep an eye on our Event page for 
additional opportunities: 
scratchfoundation.org/get-involved/
events

Helpful Links:

● Scratch Application: scratch.mit.edu

● Learning Library: scratchfoundation.org/
learn/learning-library 

● Email Signup: scratch.mit.edu/connect

● Follow us on Instagram and Facebook 
@ScratchTeam

● Also see our YouTube channel 
@scratchteam for tutorials

https://www.youtube.com/@scratchfoundation
https://scratchfoundation.org/get-involved/events
https://scratchfoundation.org/get-involved/events
https://scratch.mit.edu/
https://scratchfoundation.org/learn/learning-library
https://scratchfoundation.org/learn/learning-library
http://scratch.mit.edu/connect
https://www.youtube.com/@scratchteam



